The Tits—kantor—koecher Construction for Jordan Dialgebras

نویسنده

  • P. S. KOLESNIKOV
چکیده

We study a noncommutative generalization of Jordan algebras called Leibniz— Jordan algebras. These algebras satisfy the identities [x1x2]x3 = 0, (x 2 1 , x2, x3) = 2(x1, x2, x1x3), x1(x 2 1 x2) = x 2 1 (x1x2); they are related with Jordan algebras in the same way as Leibniz algebras are related to Lie algebras. We present an analogue of the Tits— Kantor—Koecher construction for Leibniz—Jordan algebras that provides an embedding of such an algebra into Leibniz algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

JORDAN BIMODULES OVER THE SUPERALGEBRAS P (n) AND Q(n)

We extend the Jacobson’s Coordinatization theorem to Jordan superalgebras. Using it we classify Jordan bimodules over superalgebras of types Q(n) and JP (n), n ≥ 3. Then we use the Tits-Kantor-Koecher construction and representation theory of Lie superalgebras to treat the remaining case Q(2).

متن کامل

Simple Finite Jordan Pseudoalgebras⋆

We consider the structure of JordanH-pseudoalgebras which are linearly finitely generated over a Hopf algebra H . There are two cases under consideration: H = U(h) and H = U(h)#C[Γ], where h is a finite-dimensional Lie algebra over C, Γ is an arbitrary group acting on U(h) by automorphisms. We construct an analogue of the Tits–Kantor–Koecher construction for finite Jordan pseudoalgebras and des...

متن کامل

Realization of locally extended affine Lie algebras of type $A_1$

Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...

متن کامل

Explicit Hilbert spaces for certain unipotent representations II

To each real semisimple Jordan algebra, the Tits-Koecher-Kantor theory associates a distinguished parabolic subgroup P = L N of a semisimple Lie group G. The groups P which arise in this manner are precisely those for which N is abelian, and P is conjugate to its opposite P. Each non-open L-orbit O on N∗ admits an L-equivariant measure dμ which is unique up to scalar multiple. By Mackey theory,...

متن کامل

The Supermagic Square in Characteristic 3 and Jordan Superalgebras

Recently, the classical Freudenthal Magic Square has been extended over fields of characteristic 3 with two more rows and columns filled with (mostly simple) Lie superalgebras specific of this characteristic. This Supermagic Square will be reviewed and some of the simple Lie superalgebras that appear will be shown to be isomorphic to the Tits-Kantor-Koecher Lie superalgebras of some Jordan supe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009